Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38600154

RESUMO

Preclinical research has demonstrated the efficacy of CB1 receptor (CB1R) antagonists in reducing drug-taking behavior. However, clinical trials with rimonabant, a CB1R antagonist with inverse agonist profile, failed due to severe adverse effects, such as depression and suicidality. As a result, efforts have shifted towards developing novel neutral CB1R antagonists without an inverse agonist profile for treating substance use disorders. Here, we assessed AM6527, a CB1R neutral antagonist, in addiction animal models. Our findings revealed that AM6527 did not affect cocaine self-administration under fixed-ratio reinforcement schedules but dose-dependently inhibited it under progressive-ratio reinforcement schedules. Additionally, AM6527 dose-dependently inhibited heroin self-administration under both fixed-ratio and progressive-ratio reinforcement schedules and oral sucrose self-administration under a fixed-ratio reinforcement schedule, as well as cocaine- or heroin-triggered reinstatement of drug-seeking behavior in rats. However, chronic AM6527 administration for five consecutive days significantly inhibited heroin self-administration only during the initial two days, indicating tolerance development. Notably, AM6527 did not produce rewarding or aversive effects by itself in classical electrical intracranial self-stimulation and conditioned place preference tests. However, in optical intracranial self-stimulation (oICSS) maintained by optogenetic stimulation of midbrain dopamine neurons in DAT-cre mice, both AM6527 and rimonabant dose-dependently inhibited dopamine-dependent oICSS behavior. Together, these findings suggest that AM6527 effectively reduces drug-taking and seeking behaviors without rimonabant-like adverse effects. Thus, AM6527 warrants further investigation as a potential pharmacotherapy for opioid and cocaine use disorders.

2.
Neuropharmacology ; 252: 109947, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631564

RESUMO

A growing body of research indicates that ß-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.

3.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374108

RESUMO

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Assuntos
Canabidiol , Cocaína , Receptores de Canabinoides , Transtornos Relacionados ao Uso de Substâncias , Animais , Camundongos , Ratos , Canabidiol/análogos & derivados , Cocaína/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Nicotina/farmacologia , Preparações Farmacêuticas/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
4.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886574

RESUMO

Cannabis legalization continues to progress in the USA for medical and recreational purposes. G protein-coupled receptor 55 (GPR55) is a putative "CB3" receptor. However, its functional role in cannabinoid action and drug abuse is not explored. Here we report that GPR55 is mainly expressed in cortical and subcortical glutamate neurons and its activation attenuates nicotine taking and seeking in rats and mice. RNAscope in situ hybridization detected GPR55 mRNA in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons in wildtype, but not GPR55-knockout, mice. GPR55 mRNA was not detected in midbrain dopamine (DA) neurons in either genotype. Immunohistochemistry assays detected GPR55-like staining, but the signal is not GPR55-specific as the immunostaining was still detectable in GPR55-knockout mice. We then used a fluorescent CB1-GPR55 ligand (T1117) and detected GPR55 binding in cortical and subcortical glutamate neurons, but not in midbrain DA neurons, in CB1-knockout mice. Systemic administration of O-1602, a GPR55 agonist, dose-dependently increased extracellular glutamate, not DA, in the nucleus accumbens. Pretreatment with O-1602 failed to alter Δ9-tetrahydrocannabinol (D9-THC)-induced triad effects or intravenous cocaine self-administration, but it dose-dependently inhibited nicotine self-administration under fixed-ratio and progressive-ratio reinforcement schedules in rats and wildtype mice, not in GPR55-knockout mice. O-1602 itself is not rewarding or aversive as assessed by optical intracranial self-stimulation (oICSS) in DAT-Cre mice. These findings suggest that GPR55 is functionally involved in nicotine reward process possibly by a glutamate-dependent mechanism, and therefore, GPR55 deserves further research as a new therapeutic target for treating nicotine use disorder.

5.
Mol Psychiatry ; 28(10): 4203-4214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37479780

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that regulate gene expression. Δ9-tetrahydrocannabinol (Δ9-THC) is a PPARγ agonist and some endocannabinoids are natural activators of PPARα and PPARγ. However, little is known regarding their cellular distributions in the brain and functional roles in cannabinoid action. Here, we first used RNAscope in situ hybridization and immunohistochemistry assays to examine the cellular distributions of PPARα and PPARγ expression in the mouse brain. We found that PPARα and PPARγ are expressed in ~70% of midbrain dopamine (DA) neurons. In the amygdala, PPARα is expressed in ~60% of glutamatergic neurons, while PPARγ is expressed in ~60%  of GABA neurons. However, no PPARα/γ signal was detected in GABA neurons in the nucleus accumbens. We then used a series of behavioral assays to determine the functional roles of PPARα/γ in the CNS effects of Δ9-THC. We found that optogenetic stimulation of midbrain DA neurons was rewarding as assessed by optical intracranial self-stimulation (oICSS) in DAT-cre mice. Δ9-THC and a PPARγ (but not PPARα) agonist dose-dependently inhibited oICSS. Pretreatment with PPARα or PPARγ antagonists attenuated the Δ9-THC-induced reduction in oICSS and Δ9-THC-induced anxiogenic effects. In addition, a PPARγ agonist increased, while PPARα or PPARγ antagonists decreased open-field locomotion. Pretreatment with PPARα or PPARγ antagonists potentiated Δ9-THC-induced hypoactivity and catalepsy but failed to alter Δ9-THC-induced analgesia, hypothermia and immobility. These findings provide the first anatomical and functional evidence supporting an important role of PPARα/γ in DA-dependent behavior and cannabinoid action.


Assuntos
Canabinoides , PPAR alfa , Camundongos , Animais , PPAR alfa/metabolismo , Dopamina , Canabinoides/farmacologia , PPAR gama/metabolismo , Dronabinol , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo
6.
Res Sq ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909477

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that regulate gene expression. Δ 9 -tetrahydrocannabinol (Δ 9 -THC) is a PPARg agonist and some endocannabinoids are natural activators of PPAR a and PPARg. Therefore, both the receptors are putative cannabinoid receptors. However, little is known regarding their cellular distributions in the brain and functional roles in cannabinoid action. Here we first used RNAscope in situ hybridization and immunohistochemistry assays to examine the cellular distributions of PPARα and PPARγ expression in the mouse brain. We found that PPARα and PPARγ are highly expressed in ~70% midbrain dopamine (DA) neurons and in ~50% GABAergic and ~50% glutamatergic neurons in the amygdala. However, no PPARα/γ signal was detected in GABAergic neurons in the nucleus accumbens. We then used a series of behavioral assays to determine the functional roles of PPARα/γ in the CNS effects of Δ 9 -THC. We found that optogenetic stimulation of midbrain DA neurons was rewarding as assessed by optical intracranial self-stimulation (oICSS) in DAT-cre mice. Δ 9 -THC and a PPARγ (but not PPARα) agonist dose-dependently inhibited oICSS, suggesting that dopaminergic PPARγ modulates DA-dependent behavior. Surprisingly, pretreatment with PPARα or PPARγ antagonists dose-dependently attenuated the Δ 9 -THC-induced reduction in oICSS and anxiogenic effects. In addition, a PPARγ agonist increased, while PPARa or PPARγ antagonists decreased open-field locomotion. Pretreatment with PPARa or PPARγ antagonists potentiated Δ 9 -THC-induced hypoactivity and catalepsy but failed to alter Δ 9 -THC-induced analgesia, hypothermia and immobility. These findings provide the first anatomical and functional evidence supporting an important role of PPARa/g in DA-dependent behavior and cannabinoid action.

7.
J Med Chem ; 66(3): 1809-1834, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36661568

RESUMO

Highly selective dopamine D3 receptor (D3R) partial agonists/antagonists have been developed for the treatment of psychostimulant use disorders (PSUD). However, none have reached the clinic due to insufficient potency/efficacy or potential cardiotoxicity. Cariprazine, an FDA-approved drug for the treatment of schizophrenia and bipolar disorder, is a high-affinity D3R partial agonist (Ki = 0.22 nM) with 3.6-fold selectivity over the homologous dopamine D2 receptor (D2R). We hypothesized that compounds that are moderately D3R/D2R-selective partial agonists/antagonists may be effective for the treatment of PSUD. By systematically modifying the parent molecule, we discovered partial agonists/antagonists, as measured in bioluminescence resonance energy transfer (BRET)-based assays, with high D3R affinities (Ki = 0.14-50 nM) and moderate selectivity (<100-fold) over D2R. Cariprazine and two lead analogues, 13a and 13e, decreased cocaine self-administration (FR2; 1-10 mg/kg, i.p.) in rats, suggesting that partial agonists/antagonists with modest D3R/D2R selectivity may be effective in treating PSUD and potentially comorbidities with other affective disorders.


Assuntos
Estimulantes do Sistema Nervoso Central , Dopamina , Ratos , Animais , Receptores de Dopamina D3 , Ligantes , Agonistas de Dopamina
8.
J Neurosci ; 43(3): 373-385, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36517243

RESUMO

Cannabinoids modulate dopamine (DA) transmission and DA-related behavior, which has been thought to be mediated initially by activation of cannabinoid CB1 receptors (CB1Rs) on GABA neurons. However, there is no behavioral evidence supporting it. In contrast, here we report that CB1Rs are also expressed in a subset of DA neurons and functionally underlie cannabinoid action in male and female mice. RNAscope in situ hybridization (ISH) assays demonstrated CB1 mRNA in tyrosine hydroxylase (TH)-positive DA neurons in the ventral tegmental area (VTA) and glutamate decarboxylase 1 (GAD1)-positive GABA neurons. The CB1R-expressing DA neurons were located mainly in the middle portion of the VTA with the number of CB1-TH colocalization progressively decreasing from the medial to the lateral VTA. Triple-staining assays indicated CB1R mRNA colocalization with both TH and vesicular glutamate transporter 2 (VgluT2, a glutamate neuronal marker) in the medial VTA close to the midline of the brain. Optogenetic activation of this population of DA neurons was rewarding as assessed by optical intracranial self-stimulation. Δ9-tetrahydrocannabinol (Δ9-THC) or ACEA (a selective CB1R agonist) dose-dependently inhibited optical intracranial self-stimulation in DAT-Cre control mice, but not in conditional knockout mice with the CB1R gene absent in DA neurons. In addition, deletion of CB1Rs from DA neurons attenuated Δ9-THC-induced reduction in DA release in the NAc, locomotion, and anxiety. Together, these findings indicate that CB1Rs are expressed in a subset of DA neurons that corelease DA and glutamate, and functionally underlie cannabinoid modulation of DA release and DA-related behavior.SIGNIFICANCE STATEMENT Cannabinoids produce a series of psychoactive effects, such as aversion, anxiety, and locomotor inhibition in rodents. However, the cellular and receptor mechanisms underlying these actions are not fully understood. Here we report that CB1 receptors are expressed not only in GABA neurons but also in a subset of dopamine neurons, which are located mainly in the medial VTA close to the midline of the midbrain and corelease dopamine and glutamate. Optogenetic activation of these dopamine neurons is rewarding, which is dose-dependently inhibited by cannabinoids. Selective deletion of CB1 receptor from dopamine neurons blocked cannabinoid-induced aversion, hypoactivity, and anxiolytic effects. These findings demonstrate that dopaminergic CB1 receptors play an important role in mediating cannabinoid action.


Assuntos
Ansiolíticos , Canabinoides , Feminino , Camundongos , Masculino , Animais , Canabinoides/farmacologia , Neurônios Dopaminérgicos/fisiologia , Ansiolíticos/farmacologia , Dronabinol/farmacologia , Dopamina/fisiologia , Receptores de Canabinoides , Área Tegmentar Ventral/fisiologia , Receptores Dopaminérgicos , Camundongos Knockout , Ácido Glutâmico/farmacologia , RNA Mensageiro , Receptor CB1 de Canabinoide/genética
9.
Sci Adv ; 8(35): eabo1440, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054363

RESUMO

Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.

10.
Transl Psychiatry ; 12(1): 286, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851573

RESUMO

Cannabinoid CB1 receptors (CB1Rs) have been major targets in medication development for the treatment of substance use disorders. However, clinical trials with rimonabant, a CB1R antagonist/inverse agonist, failed due to severe side effects. Here, we evaluated the therapeutic potential of PIMSR, a neutral CB1R antagonist lacking an inverse agonist profile, against cocaine's behavioral effects in experimental animals. We found that systemic administration of PIMSR dose-dependently inhibited cocaine self-administration under fixed-ratio (FR5), but not FR1, reinforcement, shifted the cocaine self-administration dose-response curve downward, decreased incentive motivation to seek cocaine under progressive-ratio reinforcement, and reduced cue-induced reinstatement of cocaine seeking. PIMSR also inhibited oral sucrose self-administration. Importantly, PIMSR alone is neither rewarding nor aversive as assessed by place conditioning. We then used intracranial self-stimulation (ICSS) to explore the possible involvement of the mesolimbic dopamine system in PIMSR's action. We found that PIMSR dose-dependently attenuated cocaine-enhanced ICSS maintained by electrical stimulation of the medial forebrain bundle in rats. PIMSR itself failed to alter electrical ICSS, but dose-dependently inhibited ICSS maintained by optical stimulation of midbrain dopamine neurons in transgenic DAT-Cre mice, suggesting the involvement of dopamine-dependent mechanisms. Lastly, we examined the CB1R mechanisms underlying PIMSR's action. We found that PIMSR pretreatment attenuated Δ9-tetrahydrocannabinol (Δ9-THC)- or ACEA (a selective CB1R agonist)-induced reduction in optical ICSS. Together, our findings suggest that the neutral CB1R antagonist PIMSR deserves further research as a promising pharmacotherapeutic for cocaine use disorder.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Animais , Comportamento Animal , Cocaína/farmacologia , Condicionamento Operante/fisiologia , Dopamina , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Camundongos , Ratos , Receptor CB1 de Canabinoide , Autoadministração
11.
Neuropsychopharmacology ; 47(13): 2309-2318, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35879349

RESUMO

The non-medical use of opioids has become a national crisis in the USA. Developing non-opioid pharmacotherapies for controlling this opioid epidemic is urgent. Dopamine D3 receptor (D3R) antagonists and low efficacy partial agonists have shown promising profiles in animal models of opioid use disorders (OUD). However, to date, advancement to human studies has been limited. Here we report the effects of (S)- and (R)-enantiomers of (±)-ABS01-113, structural analogs of the D3R partial agonist, (±)-VK4-40, in which the 3-OH in the linking chain is replaced by 3-F group. (S)- and (R)-ABS01-113 are identical in chemical structure but with opposite chirality. In vitro receptor binding and functional assays indicate that (S)-ABS01-113 is an efficacious (55%) and potent (EC50 = 7.6 ± 3.9 nM) D3R partial agonist, while the (R)-enantiomer is a potent D3R antagonist (IC50 = 11.4 nM). Both (S)- and (R)-ABS01-113 bind with high affinity to D3R (Ki = 0.84 ± 0.16 and 0.37 ± 0.06 nM, respectively); however, the (S)-enantiomer is more D3/D2-selective (>1000-fold). Pharmacokinetic analyses indicate that both enantiomers display excellent oral bioavailability and high brain penetration. Systemic administration of (S)- or (R)-ABS01-113 alone failed to alter open-field locomotion in male rats and mice. Interestingly, pretreatment with (S)- or (R)-ABS01-113 attenuated heroin-enhanced hyperactivity, heroin self-administration, and (heroin + cue)-induced reinstatement of drug-seeking behavior. Together, these findings reveal that both enantiomers, particularly the highly selective and efficacious D3R partial agonist (S)-ABS01-113, demonstrate promising translational potential for the treatment of OUD.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Receptores de Dopamina D3 , Animais , Ratos , Masculino , Camundongos , Humanos , Receptores de Dopamina D3/metabolismo , Heroína , Antagonistas de Dopamina/farmacologia , Comportamento de Procura de Droga , Analgésicos Opioides/farmacologia , Agonistas de Dopamina/farmacologia
12.
J Neurosci ; 42(11): 2327-2343, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35091501

RESUMO

It is well established that glutamate plays an important role in drug-induced and cue-induced reinstatement of drug seeking. However, the role of glutamate in drug reward is unclear. In this study, we systemically evaluated the effects of multiple glutamate transporter (GLT) inhibitors on extracellular glutamate and dopamine (DA) in the nucleus accumbens (NAc), intravenous cocaine self-administration, intracranial brain-stimulation reward (BSR), and reinstatement of cocaine seeking in male and female rats. Among the five GLT inhibitors we tested, TFB-TBOA was the most potent. Microinjections of TFB-TBOA into the NAc, but not the ventral tegmental area (VTA), or dorsal striatum (DS), dose-dependently inhibited cocaine self-administration under fixed-ratio and progressive-ratio (PR) reinforcement schedules, shifted the cocaine dose-response curve downward, and inhibited intracranial BSR. Selective downregulation of astrocytic GLT-1 expression in the NAc by GLT-1 antisense oligonucleotides also inhibited cocaine self-administration. The reduction in cocaine self-administration following TFB-TBOA administration was NMDA GluN2B receptor dependent, and rats self-administering cocaine showed upregulation of GluN2B expression in NAc DA- and cAMP-regulated phosphoprotein 32 (DARPP-32)-positive medium-spiny neurons (MSNs). In contrast, TFB-TBOA, when locally administered into the NAc, VTA, or ventral pallidum (VP), dose-dependently reinstated cocaine-seeking behavior. Intra-NAc TFB-TBOA-evoked drug-seeking was long-lasting and NMDA/AMPA receptor dependent. These findings, for the first time, indicate that glutamate in the NAc negatively regulates cocaine's rewarding effects, while an excess of glutamate in multiple brain regions can trigger reinstatement of drug-seeking behavior.SIGNIFICANCE STATEMENT It is well known that glutamate plays an important role in relapse to drug seeking. However, the role of glutamate in drug reward is less clear. Here, we report that TFB-TBOA, a highly potent glutamate transporter (GLT) inhibitor, dose-dependently elevates extracellular glutamate and inhibits cocaine self-administration and brain-stimulation reward (BSR), when administered locally into the nucleus accumbens (NAc), but not other brain regions. Mechanistic assays indicate that cocaine self-administration upregulates NMDA-GluN2B receptor subtype expression in striatal dopaminoceptive neurons and activation of GluN2B by TFB-TBOA-enhanced glutamate inhibits cocaine self-administration. TFB-TBOA also reinstates cocaine-seeking behavior when administered into the NAc, ventral tegmental area (VTA), and ventral pallidum (VP). These findings demonstrate that glutamate differentially regulates cocaine reward versus relapse, reducing cocaine reward, while potentiating relapse to cocaine seeking.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , N-Metilaspartato/farmacologia , Núcleo Accumbens , Ratos , Receptores de N-Metil-D-Aspartato , Autoadministração
13.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064236

RESUMO

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Assuntos
Grelina , Receptores de Grelina , Animais , Animais Geneticamente Modificados , Grelina/farmacologia , Camundongos , Oxicodona , Ratos , Ratos Long-Evans , Ratos Wistar
14.
Neuropsychopharmacology ; 47(8): 1449-1460, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923576

RESUMO

Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic ß1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Adrenérgicos/farmacologia , Adrenérgicos/uso terapêutico , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Grelina , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores de Grelina/uso terapêutico , Autoadministração , Área Tegmentar Ventral
15.
Transl Psychiatry ; 11(1): 570, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750356

RESUMO

Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine's pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.


Assuntos
Cocaína , Dopamina , Animais , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Núcleo Accumbens/metabolismo , Transmissão Sináptica , Zinco
16.
Front Pharmacol ; 12: 722476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566647

RESUMO

Recent research indicates that brain cannabinoid CB2 receptors are involved in drug reward and addiction. However, it is unclear whether ß-caryophyllene (BCP), a natural product with a CB2 receptor agonist profile, has therapeutic effects on methamphetamine (METH) abuse and dependence. In this study, we used animal models of self-administration, electrical brain-stimulation reward (BSR) and in vivo microdialysis to explore the effects of BCP on METH-taking and METH-seeking behavior. We found that systemic administration of BCP dose-dependently inhibited METH self-administration under both fixed-ratio and progressive-ratio reinforcement schedules in rats, indicating that BCP reduces METH reward, METH intake, and incentive motivation to seek and take METH. The attenuating effects of BCP were partially blocked by AM 630, a selective CB2 receptor antagonist. Genetic deletion of CB2 receptors in CB2-knockout (CB2-KO) mice also blocked low dose BCP-induced reduction in METH self-administration, suggesting possible involvement of a CB2 receptor mechanism. However, at high doses, BCP produced a reduction in METH self-administration in CB2-KO mice in a manner similar as in WT mice, suggesting that non-CB2 receptor mechanisms underlie high dose BCP-produced effects. In addition, BCP dose-dependently attenuated METH-enhanced electrical BSR and inhibited METH-primed and cue-induced reinstatement of drug-seeking in rats. In vivo microdialysis assays indicated that BCP alone did not produce a significant reduction in extracellular dopamine (DA) in the nucleus accumbens (NAc), while BCP pretreatment significantly reduced METH-induced increases in extracellular NAc DA in a dose-dependent manner, suggesting a DA-dependent mechanism involved in BCP action. Together, the present findings suggest that BCP might be a promising therapeutic candidate for the treatment of METH use disorder.

17.
Behav Brain Res ; 415: 113506, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34352292

RESUMO

Recent preclinical studies have reported that pretreatment with the novel and highly-selective dopamine D3 receptor (D3R) antagonists R-VK4-40 or VK4-116 attenuates the abuse-related behavioral effects of oxycodone while enhancing its analgesic properties. However, whether these observed effects are generalizable to the broad class of D3R antagonists and/or extend to opioids other than oxycodone has not been extensively explored. The present study sought to assess the impact of pretreatment with another selective D3R antagonist, PG01037, on several behavioral effects of morphine in mice. C57Bl/6 J mice were pretreated with PG01037 (0-10 mg/kg) and tested for 1) hyperlocomotion induced by acute morphine (5.6-56 mg/kg), 2) locomotor sensitization following repeated morphine (56 mg/kg), 3) antinociception following acute morphine (18 mg/kg), and 4) catalepsy following administration of PG01037 alone or in combination with morphine (56 mg/kg). PG01037 dose-dependently attenuated morphine-induced hyperlocomotion and morphine-induced antinociception at doses that did not alter basal locomotion or nociception alone, but did not prevent the induction of locomotor sensitization following repeated morphine administration. Moreover, PG01037 did not induce catalepsy either alone or in combination with morphine. These results suggest that attenuation of acute opioid-induced hyperactivity may be a behavioral effect shared among D3R-selective antagonists, thus supporting continued investigations into their use as potential treatments for opioid use disorder. However, PG01037 is unlike newer, highly-selective D3R antagonists in its capacity to reduce opioid-induced antinociception, indicating that modulation of opioid analgesia may vary across different D3R antagonists.


Assuntos
Acatisia Induzida por Medicamentos/tratamento farmacológico , Benzamidas/farmacologia , Morfina/farmacologia , Atividade Motora/efeitos dos fármacos , Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Piridinas/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Piridinas/administração & dosagem
18.
Neuropharmacology ; 189: 108538, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789118

RESUMO

Cannabinoids produce a number of central nervous system effects via the CB2 receptor (CB2R), including analgesia, antianxiety, anti-reward, hypoactivity and attenuation of opioid-induced respiratory depression. However, the cellular distributions of the CB2Rs in the brain remain unclear. We have reported that CB2Rs are expressed in midbrain dopamine (DA) neurons and functionally regulate DA-mediated behavior(s). Unexpectedly, high densities of CB2-like signaling were also found in a neighboring motor structure - the red nucleus (RN) of the midbrain. In the present study, we systematically explored CB2R expression and function in the RN. Immunohistochemistry and in situ hybridization assays showed high densities of CB2R-immunostaining and mRNA signal in RN magnocellular glutamate neurons in wildtype and CB1-knockout, but not CB2-knockout, mice. Ex vivo electrophysiological recordings in midbrain slices demonstrated that CB2R activation by JWH133 dose-dependently inhibited firing rates of RN magnocellular neurons in wildtype, but not CB2-knockout, mice, while having no effect on RN GABA neurons in transgenic GAD67-GFP reporter mice, suggesting CB2-mediated effects on glutamatergic neurons. In addition, microinjection of JWH133 into the RN produced robust ipsilateral rotations in wildtype, but not CB2-knockout mice, which was blocked by pretreatment with either a CB2 or DA D1 or D2 receptor antagonist, suggesting a DA-dependent effect. Finally, fluorescent tract tracing revealed glutamatergic projections from the RN to multiple brain areas including the ventral tegmental area, thalamus, and cerebellum. These findings suggest that CB2Rs in RN glutamate neurons functionally modulate motor activity, and therefore, constitute a new target in cannabis-based medication development for motor disorders.


Assuntos
Ácido Glutâmico/metabolismo , Atividade Motora/fisiologia , Neurônios/metabolismo , Receptor CB2 de Canabinoide/biossíntese , Núcleo Rubro/metabolismo , Animais , Canabinoides/administração & dosagem , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microinjeções , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Núcleo Rubro/diagnóstico por imagem
19.
Addict Biol ; 26(4): e13005, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538103

RESUMO

Despite extensive research, the rewarding effects of cannabinoids are still debated. Here, we used a newly established animal procedure called optogenetic intracranial self-stimulation (ICSS) (oICSS) to re-examine the abuse potential of cannabinoids in mice. A specific adeno-associated viral vector carrying a channelrhodopsin gene was microinjected into the ventral tegmental area (VTA) to express light-sensitive channelrhodopsin in dopamine (DA) neurons of transgenic dopamine transporter (DAT)-Cre mice. Optogenetic stimulation of VTA DA neurons was highly reinforcing and produced a classical "sigmoidal"-shaped stimulation-response curve dependent upon the laser pulse frequency. Systemic administration of cocaine dose-dependently enhanced oICSS and shifted stimulation-response curves upward, in a way similar to previously observed effects of cocaine on electrical ICSS. In contrast, Δ9 -tetrahydrocannabinol (Δ9 -THC), but not cannabidiol, dose-dependently decreased oICSS responding and shifted oICSS curves downward. WIN55,212-2 and ACEA, two synthetic cannabinoids often used in laboratory settings, also produced dose-dependent reductions in oICSS. We then examined several new synthetic cannabinoids, which are used recreationally. XLR-11 produced a cocaine-like increase, AM-2201 produced a Δ9 -THC-like reduction, while 5F-AMB had no effect on oICSS responding. Immunohistochemistry and RNAscope in situ hybridization assays indicated that CB1 Rs are expressed mainly in VTA GABA and glutamate neurons, while CB2 Rs are expressed mainly in VTA DA neurons. Together, these findings suggest that most cannabinoids are not reward enhancing, but rather reward attenuating or aversive in mice. Activation of CB1 R and/or CB2 R in different populations of neurons in the brain may underlie the observed actions.


Assuntos
Canabinoides/efeitos adversos , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Optogenética/métodos , Animais , Comportamento Animal , Cocaína/farmacologia , Neurônios Dopaminérgicos , Dronabinol/farmacologia , Integrases , Masculino , Camundongos , Camundongos Transgênicos , Recompensa , Autoestimulação/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
20.
Neuropsychopharmacology ; 46(4): 860-870, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33069159

RESUMO

Cocaine abuse continues to be a serious health problem worldwide. Despite intense research, there is still no FDA-approved medication to treat cocaine use disorder (CUD). In this report, we explored the potential utility of beta-caryophyllene (BCP), an FDA-approved food additive for the treatment of CUD. We found that BCP, when administered intraperitoneally or intragastrically, dose-dependently attenuated cocaine self-administration, cocaine-conditioned place preference, and cocaine-primed reinstatement of drug seeking in rats. In contrast, BCP failed to alter food self-administration or cocaine-induced hyperactivity. It also failed to maintain self-administration in a drug substitution test, suggesting that BCP has no abuse potential. BCP was previously reported to be a selective CB2 receptor agonist. Unexpectedly, pharmacological blockade or genetic deletion of CB1, CB2, or GPR55 receptors in gene-knockout mice failed to alter BCP's action against cocaine self-administration, suggesting the involvement of non-CB1, non-CB2, and non-GPR55 receptor mechanisms. Furthermore, pharmacological blockade of µ opioid receptor or Toll-like receptors complex failed to alter, while blockade of peroxisome proliferator-activated receptors (PPARα, PPARγ) reversed BCP-induced reduction in cocaine self-administration, suggesting the involvement of PPARα and PPARγ in BCP's action. Finally, we used electrical and optogenetic intracranial self-stimulation (eICSS, oICSS) paradigms to study the underlying neural substrate mechanisms. We found that BCP is more effective in attenuation of cocaine-enhanced oICSS than eICSS, the former driven by optical activation of midbrain dopamine neurons in DAT-cre mice. These findings indicate that BCP may be useful for the treatment of CUD, likely by stimulation of PPARα and PPARγ in the mesolimbic system.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Comportamento Animal , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Aditivos Alimentares/uso terapêutico , Camundongos , PPAR alfa/uso terapêutico , PPAR gama , Sesquiterpenos Policíclicos , Ratos , Receptores de Canabinoides , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...